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A LITTLE CHARITY GUARANTEES ALMOST ENVY-FREENESS\ast 
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Abstract. The fair division of indivisible goods is a very well-studied problem. The goal of this
problem is to distribute m goods to n agents in a ``fair"" manner, where every agent has a valuation for
each subset of goods. We assume monotone valuations. Envy-freeness is the most extensively studied
notion of fairness. However, envy-free allocations do not always exist when goods are indivisible.
The notion of fairness we consider here is ``envy-freeness up to any good,"" EFX, where no agent
envies another agent after the removal of any single good from the other agent's bundle. It is not
known if such an allocation always exists. We show there is always a partition of the set of goods
into n + 1 subsets (X1, . . . , Xn, P ), where for i \in [n], Xi is the bundle allocated to agent i and the
set P is unallocated (or donated to charity) such that we have (1) envy-freeness up to any good, (2)
no agent values P higher than her own bundle, and (3) fewer than n goods go to charity, i.e., | P | < n
(typically m \gg n). Our proof is constructive and leads to a pseudopolynomial time algorithm to
find such an allocation. When agents have additive valuations and | P | is large (i.e., when | P | is
close to n), our allocation also has a good maximin share (MMS) guarantee. Moreover, a minor
variant of our algorithm also shows the existence of an allocation that is 4/7 groupwise maximin
share (GMMS): this is a notion of fairness stronger than MMS. This improves upon the current
best bound of 1/2 known for an approximate GMMS allocation. (Very recently and independently,
Amanatidis, Ntokos, and Markakis [Theoret. Comput. Sci., 841 (2020), pp. 94--109], also showed the
existence of a 4/7-GMMS allocation.)
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1. Introduction. Fair division of goods among competing agents is a funda-
mental problem in Economics and Computer Science. There is a set M of m goods
and the goal is to allocate goods among n agents in a fair way. An allocation is a
partition of M into disjoint subsets X1, . . . , Xn where Xi is the set of goods given to
agent i. When can an allocation be considered ``fair""? One of the most well-studied
notions of fairness is Envy-freeness. Every agent has a value associated with each
subset of M and agent i envies agent j if i values Xj more than Xi. An allocation
is envy-free if no agent envies another. An envy-free allocation can be regarded as a
fair and desirable partition of M among the n agents since no agent envies another;
as mentioned in [30], such a mechanism of partitioning land dates back to the Bible.

Unlike land which is divisible, goods in our setting are indivisible and an envy-
free allocation of the given set of goods need not exist. Consider the following simple
example with two agents and a single good that both agents desire: one of the agents
has to receive this good and the other agent envies her. Since envy-free allocations
need not exist, several relaxations have been considered.
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A LITTLE CHARITY GUARANTEES ALMOST ENVY-FREENESS 1337

Relaxations. Budish [13] introduced the notion of EF1: this is an allocation of
goods that is ``envy-free up to one good."" In an EF1 allocation, agent i may envy
agent j, but this envy would vanish as soon as some good is removed from Xj . Note
that no good is really removed from Xj : this is simply a way of assessing how much
i values Xj more than Xi. That is, if i values Xj more than Xi, then there exists
some g \in Xj such that i values Xi at least as much as Xj \setminus \{ g\} . Going back to the
example of two agents and a single good, the allocation where one agent receives this
good is EF1. It is known that EF1 allocations always exist; as shown by Lipton et al.
[29], such an allocation can be efficiently computed.1

Caragiannis et al. [15] introduced a notion of envy-freeness called EFX that is
stronger than EF1. An EFX allocation is one that is ``envy-free up to any good."" In
an EFX allocation, agent i may envy agent j, but this envy would vanish as soon as
any good is removed from Xj . Thus every EFX allocation is also EF1 but not every
EF1 allocation is EFX.

a b c
Agent 1 1 1 3
Agent 2 1 1 3

Consider the simple example given above: there are three goods a, b, c and two
agents with additive valuations2 (formally defined in section 1.1) as described below.
Both agents value c three times as much as a or b. Observe that there is no envy-
free allocation here. The allocation where agent 1 gets \{ a\} and agent 2 gets \{ b, c\} is
EF1 but not EFX. On the other hand, the allocation where agent 1 gets \{ a, b\} and
agent 2 gets \{ c\} is EFX. Indeed, the latter allocation seems fairer than the former
allocation. As said in [14], ``Arguably, EFX is the best fairness analog of envy-freeness
of indivisible items."" While it is known that EF1 allocations always exist, the question
of whether EFX allocations always exist is still an open problem (despite ``significant
effort,"" according to [15]). In fact, Procaccia [31] calls this question the current biggest
open problem in fair division:

``This fundamental and deceptively accessible question is open. In
my view, it is the successor of envy-free cake cutting as fair division's
biggest problem.""

Plaut and Roughgarden [30] showed that EFX allocations always exist (i) when
there are only two agents or (ii) when all n agents have the same valuation function.
Moreover, it was shown in [30] that exponentially many value queries may be needed
to determine EFX allocations even in the restricted setting where there are only two
agents with identical submodular valuation functions.3 It was not known until very
recently if an EFX allocation always exists even when there are only three agents
with additive valuations. A positive answer to this question was very recently given
by Chaudhury, Garg, and Mehlhorn [17]. This was said in [30]: ``We suspect that
at least for general valuations, there exist instances where no EFX allocation exists.""
Note that a general valuation is one that is monotone (defined in section 1.1.1).

A relaxation of EFX. Very recently, Caragiannis, Gravin, and Huang [14]
introduced a more relaxed notion of EFX called EFX-with-charity. This is a partial

1The algorithm in [29] was published in 2004 with a different property and EF1 was proposed in
2011.

2The value of a set S \subseteq M is the sum of values of goods in S.
3These are valuation functions with decreasing marginal values.
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1338 CHAUDHURY, KAVITHA, MEHLHORN, AND SGOURITSA

allocation that is EFX, i.e., the entire set of goods need not be distributed among
the agents. So some goods may be left unallocated and it is assumed that these
unallocated goods are donated to charity. There is a very simple allocation that is
EFX-with-charity where no good is assigned to any agent---thus all goods are donated
to charity. Obviously, this is not an interesting allocation and one seeks allocations
with better guarantees on the allocated and unallocated goods. One such allocation
was shown in [14].

Let X\ast = \langle X\ast 
1 , . . . , X

\ast 
n\rangle be an optimal Nash social welfare allocation on the entire

set of goods, i.e., an allocation that maximizes \Pi n
i=1vi(X

\ast 
i ), where vi is agent i's

valuation function. It was shown in [14] that when agents have additive valuations,
there always exists an EFX-with-charity allocation X = \langle X1, . . . , Xn\rangle where every
agent receives at least half the value of her allocation in X\ast . Interestingly, as shown
in [14], Xi \subseteq X\ast 

i for all i. Unfortunately, there are no upper bounds on the number
of unallocated goods or on the value any agent has for the set of goods donated to
charity.

We believe these are important questions to ask. The ideal allocation is one that
is EFX and allocates all goods, so we would like a guarantee that a large number of
goods have been allocated to agents. Moreover, since EFX allocations are relaxations
of envy-free allocations, it is in the same spirit that we seek an EFX (partial) allocation
where nobody envies the set of unallocated goods. The allocation in [14] gives no
guarantee either on the number of unallocated goods or on whether any agent values
the set of unallocated goods more than her own bundle. Here we consider the notion
of EFX-with-bounded-charity. That is, we seek EFX-with-charity allocations with
bounds on the set given to charity, i.e., a bound on the size and a bound on the value
of the set of goods donated to charity.

Efficient allocations. There has also been a significant amount of work done
in determining fair allocations that are efficient. Efficiency is usually a measure of
the overall welfare that an allocation achieves while still being fair. A very common
measure of efficiency is Pareto-optimality: an allocationX is said to be Pareto-optimal
if there is no allocation Y such that vi(Yi) \geq vi(Xi) for all agents i and vi(Yj) > vi(Xj)
for some agent j. Intuitively, we cannot make any agent happier without reducing the
valuation of some other agent. With this is in mind, a natural question to ask is the
following: can we get fair allocations (EF1 or EFX) that are also Pareto-optimal?

Caragiannis et al. [15] answered the above question positively for EF1, by show-
ing that an optimal Nash social welfare allocation is EF1 (fair) and Pareto-optimal
(efficient). Thereafter, Nash social welfare in itself has been used as a measure of
efficiency [14].4 Furthermore, Plaut and Roughgarden [30] showed that there exists
an instance where no EFX allocation is Pareto-optimal. Thus, the question we wish
to answer is: can we get good relaxations of EFX with high Nash social welfare? It
turns out that by modifying the first step of our algorithm, we can determine an EFX
allocation with bounded charity (fair) that has high Nash social welfare (efficient)
(see subsection 1.1.3 for a more precise and detailed statement).

1.1. Our results. Let N = [n] be the set of agents. Every agent i \in [n] has a
valuation function vi : 2

M \rightarrow R\geq 0, where M is the set of m goods.

1.1.1. Monotone valuations. We show our main existence result for monotone
valuation functions, i.e., the only assumption we make on any valuation function vi
is that it is monotone, so S \subseteq T implies vi(S) \leq vi(T ).

4The higher the Nash social welfare of an allocation, the more efficient the allocation is.
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A LITTLE CHARITY GUARANTEES ALMOST ENVY-FREENESS 1339

In contrast, the EFX-with-charity allocation in [14] works only for additive valu-
ations, i.e., for any S \subseteq M and i \in [n], we have vi(S) =

\sum 
g\in S vi(\{ g\} ).

We show there always exists an allocation5 X = \langle X1, . . . , Xn\rangle that satisfies the
following properties:

1. X is EFX, i.e., for any two agents i, j, vi(Xi) \geq vi(Xj \setminus \{ g\} ) for any g \in Xj ;
2. vi(Xi) \geq vi(P ) for all agents i, where P = M \setminus \cup ni=1Xi is the set of unallocated

goods;
3. | P | < n (recall that n is the number of agents and typically n\ll m).

Note that our result implies the following simple observation---among the n
agents, if there is just one agent who has no preferences (say, for agent i, we have
vi(S) = 0 for all S \subseteq M), then a complete EFX allocation always exists for mono-
tone valuations: Find an EFX allocation satisfying all the three properties mentioned
above, on the set of agents N \setminus \{ i\} . The allocation among the agents in N \setminus \{ i\} is
EFX (by condition 1) and we now allocate P (the set of unallocated goods) to agent
i. Observe that agent i envies nobody as i has the same value for every subset of
goods and nobody envies i as nobody envies P (by condition 2).

Our proof is constructive. We start with no goods being allocated to the agents
and find the claimed allocation by at most nmV/\Delta +m applications of three simple
update rules, where n is the number of agents, m is the number of goods, V =
maxi vi(M) is the maximum valuation of any agent, and \Delta = mini min\{ | vi(T )  - 
vi(S)| : S, T \subseteq M and vi(S) \not = vi(T )\} is the minimum difference between distinct
valuations.

The update rules use a minimal-envied-subset-oracle: given S \subseteq M such that
there is an agent who envies S, find a subset Z \subseteq S such that there is an agent
who envies Z and no agent envies a proper subset of Z. This oracle can be realized
by a simple algorithm that uses at most nm value queries. Thus we show that for
monotone valuations, an EFX allocation that satisfies properties 1--3 can be computed
with poly(n,m, V, 1/\Delta ) value queries, i.e., in pseudopolynomial time. With a slight
modification of our pseudopolynomial time algorithm, we can determine a (1 - \varepsilon )-EFX
allocation with bounded charity6 in poly(n,m, log(V/\Delta ), 1/\varepsilon ) time.

1.1.2. Additive valuations. The most well-understood class of valuation func-
tions is the set of additive valuations. We consider the case when all agents have addi-
tive valuations and show that our allocation or very minor variants of our allocation
can guarantee several other notions of fairness.

Number of unallocated goods and MMS guarantee. Another interesting
and well-studied notion of fairness is maximin share (MMS). Suppose agent i has to
partition M into n bundles (or sets) knowing that she would receive the worst bundle
with respect to her valuation. Then i will choose a partition of M that maximizes
the valuation of the worst bundle (with respect to her valuation). The value of this
worst bundle is the MMS of agent i. An important question here is, does there
always exist an allocation of M where every agent gets a bundle worth at least her
MMS?

5Henceforth, allocations are partial and we will use ``complete allocation"" to refer to one where
all goods are allocated.

6X is a (1 - \varepsilon )-EFX allocation with bounded charity, when we have the following:
1. For any pair of agents i, j, vi(Xi) \geq (1 - \varepsilon ) \cdot vi(Xj \setminus \{ g\} ) for any g \in Xj ;
2. vi(Xi) \geq (1 - \varepsilon ) \cdot vi(P ) for all agents i; and
3. | P | < n.
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1340 CHAUDHURY, KAVITHA, MEHLHORN, AND SGOURITSA

Formally, let N and M be the sets of n agents and m goods, respectively. Using
\scrX to denote the set of all complete allocations, we define the MMS of an agent (say,
i) as follows:

MMS i(n,M) = max
\langle X1,...,Xn\rangle \in \scrX 

min
j\in [n]

vi(Xj).

The goal is to determine an allocation \langle X1, X2, . . . , Xn\rangle of M such that for every
i, we have vi(Xi) \geq MMS i(n,M). This question was first posed by Budish [13].
Kurokawa, Procaccia, and Wang [28] showed that such an allocation need not exist,
even in the restricted setting of only three agents! Thereafter, approximate-MMS
allocations were studied [28, 23, 26, 25] and there are polynomial time algorithms to
find allocations where for all i, agent i gets a bundle of value at least \alpha \cdot MMS i(n,M);
the best guarantee known for \alpha was 3/4 - \epsilon by Ghodsi et al. [26] (for any \epsilon > 0) and
this was very recently improved to 3/4 by Garg and Taki [25].

Amanatidis, Birmpas, and Markakis [1] showed that any complete EFX allocation
is also a 4

7 -MMS allocation. We show that our allocation promises better MMS
guarantees when the number of unallocated goods is large. Let X = \langle X1, . . . , Xn\rangle be
our allocation as described by properties 1--3 above and P be the set of unallocated
goods. For any agent i \in [n], we have

vi(Xi) \geq 
1

2 - | P | /n
MMS i(n,M).

Hence, the larger the number of unallocated goods, the better are the guarantees
that we get on MMS. The extreme values are | P | = 0 and | P | = n - 1. When | P | = 0,
we have a complete EFX allocation and when | P | = n - 1, we have an EFX allocation
that is an almost-MMS allocation: vi(Xi) \geq (1 - 1/n) \cdot MMS i(n,M) for all i.

Improved guarantees for groupwise MMS. Barman et al. [7] recently intro-
duced a notion of fairness called groupwise maximin share (GMMS), which is stronger
than MMS. An allocation is said to be GMMS if the MMS condition is satisfied for
every subgroup of agents and the union of the sets of goods allocated to them. For-
mally, a complete allocation X = \langle X1, X2, . . . , Xn\rangle is \alpha -GMMS if for any N \prime \subseteq N
and all i \in N \prime , we have vi(Xi) \geq \alpha \cdot MMS i(n

\prime ,
\bigcup 

j\in N \prime Xj), where n\prime = | N \prime | . Every
GMMS allocation, i.e., \alpha = 1, is also a complete EFX allocation [7].

It is known [7] that GMMS strictly generalizes MMS. In particular, it was shown
that GMMS allocations rule out some very unsatisfactory allocations that have MMS
guarantees. For example, consider an instance with n agents with additive valuations
and a set M of n - 1 goods and every agent has a valuation of one for each good. Since
the number of goods is less than the number of agents, we have MMS i(n,M) = 0
for every agent i. So any allocation is an MMS allocation. It is not hard to see that
the only allocations that have a GMMS guarantee are those where n  - 1 agents get
one good each and one agent is left without any goods. See subsection 2.1 in [7] for
more discussion. Naturally, it is a harder problem to approximate GMMS than MMS.
While 3

4 -MMS allocations always exist, the largest \alpha for which \alpha -GMMS allocations
are known to exist is 1

2 [7]. We extend the result of Amanatidis et al. [1] for MMS to
show the following:

\bullet A 4
7 -GMMS allocation always exists and it can be computed in pseudo-

polynomial time.

In particular, we show that modifying the last step of our algorithm results in a
complete allocation that is 4

7 -GMMS. As mentioned earlier, very recently and inde-
pendently, Amanatidis, Ntokos, and Markakis [3] showed the same approximation.
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A LITTLE CHARITY GUARANTEES ALMOST ENVY-FREENESS 1341

1.1.3. Efficiency of our allocation. We remark that our algorithm is very
``robust"" in the sense that it computes an EFX allocation with bounded charity start-
ing from any partial EFX allocation (trivially, we can start with the empty allocation,
i.e., no good is assigned to any agent) and every agent in the final allocation has a
valuation at least as high as her initial valuation (since we maintain the invariant that
the valuation of any agent never decreases in the entire course of the algorithm). This
robustness helps us to determine an EFX allocation X = \langle X1, . . . , Xn\rangle with bounded
charity that also has a high Nash social welfare, i.e., a high value of (\Pi n

i=1vi(Xi))
1/n.

Additive valuations. We show that modifying the starting step of our algo-
rithm ensures that our EFX allocation X with bounded charity also satisfies vi(Xi) \geq 
1
2 \cdot vi(X

\ast 
i ) as promised in [14], where X\ast = \langle X\ast 

1 , . . . , X
\ast 
n\rangle is an optimal Nash social

welfare allocation. Here we use the allocation computed in [14] as a black box in our
starting step, and thus our result can be regarded as an extension of the result in [14].

Subadditive valuations. A valuation v is subadditive if v(S)+v(T ) \geq v(S\cup T )
for all S, T \subseteq M . It follows from recent work by Chaudhury, Garg, and Mehta [18] that
a careful modification of the first step of our algorithm results in an EFX allocation
with bounded charity that also achieves an O(n) approximation of Nash social welfare7

when agents have subadditive valuations. Barman et al. [6] showed that it requires
an exponential number of value queries to provide a sublinear approximation to Nash
social welfare under subadditive valuations. Thus, by choosing the initial partial EFX
allocation carefully, for any fixed \varepsilon > 0, our algorithm yields a (1 - \varepsilon )-EFX allocation
with bounded charity, using a polynomial number of value queries and it achieves the
best approximation of Nash social welfare that is possible with a polynomial number
of value queries.

1.2. Our techniques. We now give an overview of the main ideas used to find
our EFX allocation. We first recall the algorithm of Lipton et al. [29] for finding an
EF1 allocation. They use the notion of an envy-graph: here each vertex corresponds to
an agent and there is an edge (i, j) if and only if i envies j. The invariant maintained is
that the envy-graph is a DAG: a cycle corresponds to a cycle of envy and by swapping
bundles along a cycle, every agent in the cycle becomes better-off. More precisely, if
i0 \rightarrow i1 \rightarrow i2 \rightarrow \cdot \cdot \cdot \rightarrow i\ell  - 1 \rightarrow i0 is a cycle in the envy-graph, then reassigning Xij+1

to agent ij for 0 \leq j < \ell (indices are to be read modulo \ell ) will increase the valuation
of every agent in the cycle. Thus cycles can be eliminated (see Figure 1). Also if there
was an edge from s to some ik where s is not a part of the cycle, this edge just gets
directed now from s to ik - 1 after we exchange bundles along the cycle.

The algorithm in [29] runs in rounds and always maintains an allocation that is
EF1. At the beginning of every round, an unenvied agent s (this is a source vertex
in this DAG) is identified and an unallocated good g is allocated to s. The new
allocation is EF1, as nobody will envy the bundle of s after removing the good g.

The reallocation operation. We now highlight a key difference between an
EF1 allocation and an EFX allocation. From the algorithm of Lipton et al. [29], it is
clear that given an EF1 allocation on a set M0 of goods, one can determine an EF1
allocation on M0 \cup M1, for any M1 \subseteq M \setminus M0, by simply adding goods in M1 one-
by-one to the existing bundles and changing the owners (if necessary) in a clever way.

7In fact, it achieves an O(n) approximation of a much larger class of efficiency functions, namely,
the generalized p-mean welfare function. Independently, Barman et al. [6] also showed how to achieve
an O(n) approximation for the generalized p-mean welfare (hence also Nash social welfare).
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1342 CHAUDHURY, KAVITHA, MEHLHORN, AND SGOURITSA

X

X1 a1

X2 a2

X3 a3

X4a4 X5 a5

X6 a6

X7 a7

``Decyclify""

X\prime 

X1 a1

X2 a2

X4 a3

X6a4 X3 a5

X5 a6

X7 a7

Fig. 1. Eliminating cycles in the envy-graph. There is a cycle in allocation X: a3 \rightarrow a4 \rightarrow 
a6 \rightarrow a5 \rightarrow a3. The bundles are exchanged along the cycle in allocation X\prime and the agents along the
cycle strictly improve their valuations. The envy edges outgoing from the agents in the cycle may
or may not be there in X\prime (the edge from a6 to a7), while the envy edges which were incoming to
the agents in the cycle reorient themselves (instead of the edge from a2 to a3 (and from a2 to a6)
in X, there is the edge from a2 to a5 (from a2 to a4) in X\prime ).

Intuitively, we never need to cut or merge the bundles formed in any EF1 allocation.
We can just append the unallocated goods appropriately to the current bundles.

The above strategy is very far from true for EFX. Consider the example given
below where there are three agents with additive valuations and four goods a, b, c,
and d; let \varepsilon \in (0, 1).

a b c d
Agent 1 \varepsilon 1 1 2
Agent 2 1 \varepsilon 1 2
Agent 3 1 1 \varepsilon 2

An EFX allocation for the first three goods has to give exactly one of a, b, c to
each of the three agents. However, an EFX allocation for all the four goods has to
allocate the singleton set \{ d\} to some agent (say, agent 1) and, say, \{ a\} to agent 2 and
\{ b, c\} to agent 3. Thus the allocation needs to be cut and merged. When there are
many agents, each with her own valuation, figuring out the cut-and-merge operations
is the difficult step. Here we implement our global reallocation operation as follows.

Improving social welfare. Suppose we have an EFX allocation

X = \langle X1, . . . , Xn\rangle 

on some subset M0 \subset M . We would now like to add a good g \in M \setminus M0. However,
we will not be able to guarantee an EFX allocation on M0\cup \{ g\} . What we will ensure
is that either case (i) or case (ii) occurs:

(i) We have an EFX allocation X \prime = \langle X \prime 
1, . . . , X

\prime 
n\rangle on a subset of M0 \cup \{ g\} 

such that vi(X
\prime 
i) \geq vi(Xi) for all i and for at least one agent j we have

vj(X
\prime 
j) > vj(Xj). Thus

\sum 
i\in [n] vi(X

\prime 
i) >

\sum 
i\in [n] vi(Xi); in other words, the

social welfare strictly improves.
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A LITTLE CHARITY GUARANTEES ALMOST ENVY-FREENESS 1343

(ii) We have an EFX allocation on M0 \cup \{ g\} and the social welfare does not
decrease.

Hence in each step of our algorithm, we either increase social welfare or we increase
the number of allocated goods without decreasing social welfare---thus we always make
progress. This is similar to the approach used by Plaut and Roughgarden [30] to
guarantee the existence of 1

2 -EFX when agents have subadditive valuations. We now
outline how we ensure that one of cases (i) and (ii) has to happen.

For simplicity of exposition, let us assume the envy-graph corresponding to our
starting EFX allocation X has a single source s. Add g to s's bundle: if nobody
envies s up to any single good, i.e., if vi(Xi) \geq vi(Xs \cup \{ g\} \setminus \{ g\prime \} ) for all i \in [n]
and all g\prime \in Xs \cup \{ g\} , then we are in an easy case as we have an EFX allocation
on M0 \cup \{ g\} . In this case, we ``decycle"" the envy-graph (if cycles are created) and
continue. Observe that swapping bundles along a cycle in the envy-graph increases
social welfare.

Most envious agent. Assume now that there are one or more agents who envy
s up to some good after g is allocated to s. To resolve this, we introduce the concept
of most envious agent. If there is an agent who envies s up to some good, then there
is some S \subset Xs \cup \{ g\} that is envied (we use \subset to denote a proper subset). That is,
there is an agent who values S more than her bundle. Let Z be any inclusionwise
minimal subset of Xs \cup \{ g\} that is envied. So there exists an agent who envies Z
and no proper subset of Z is envied by any agent. Any agent who envies Z is a most
envious agent of Xs\cup \{ g\} . Whenever there is an agent who envies s up to some good,
observe that there has to exist a most envious agent of Xs \cup \{ g\} .

Let Z be an inclusionwise minimal subset of Xs \cup \{ g\} that is envied and let t be
an agent such that vt(Xt) < vt(Z). Recall the assumption that s is the only source,
so there is a path s\rightarrow i1 \rightarrow \cdot \cdot \cdot \rightarrow ik - 1 \rightarrow t in the envy-graph. We do a leftwise shift
of bundles along this path, so s gets i1's bundle, and for 1 \leq r \leq k  - 1, ir gets ir+1's
bundle (where ik = t), and finally t gets Z. The goods in Xs \cup \{ g\} \setminus Z are thrown
back into the pool of unallocated goods (see Figure 2).

Observe that every agent in this path is strictly better-off now than in the allo-
cation X and no other agent is worse-off. Moreover, since no proper subset of Z is
envied, there is no agent envying any other agent up to any single good. Thus we
have a desired EFX allocation X \prime . When there are multiple sources, we can adapt
this technique provided there are enough unallocated goods; in particular, the number
of unallocated goods must be at least the number of sources in the envy-graph. We
describe this in detail in section 2.

We would like to contrast the above approach with other EFX algorithms [30, 14].
The 1

2 -EFX algorithm by Plaut and Roughgarden [30] either merges g (the new good)
with an existing bundle or allocates the singleton set \{ g\} to an agent. The EFX-
with-charity algorithm by Caragiannis, Gravin, and Huang [14] takes an allocation
of maximum Nash social welfare as input and then permanently removes some goods
from the instance. We regard the notion of ``most envious agent"" that shows a natural
way of breaking up a bundle to preserve envy-freeness up to any good as one of the
innovative contributions of our work.

Our other results. Regarding our result with approximate MMS guarantee, if
the number of unallocated goods in our EFX allocation is large, then the number of
sources also has to be large: these are unenvied agents. Moreover, no agent envies
the set of unallocated goods. Suppose for now that | P | = n  - 1. This means every
agent is a source. So no agent envies the bundle of any other agent and also the
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X

X1\cup ga1

X2a2 X3a3

X4a4 X5 a5 X6 a6

X7 a7

X\prime 

X2a1

X4a2 X3a3

X7a4 X5 a5 X6 a6

Za7

Fig. 2. Illustration of the update rule. The figure on the left indicates the envy-graph cor-
responding to the allocation X. Thin edges indicate weak envy edges: a thin edge from ai to aj
signifies that ai envies aj , but ai does not envy any proper subset of aj 's bundle. The thick edges
indicate strong envy edges: a thick edge from ai to aj indicates that ai also envies some proper sub-
set of aj 's bundle. Initially the envy-graph has only thin edges with a1 as the only source. Agents
a7, a5, and a6 strongly envy a1 when we give a1 the good g and a7 is a most envious agent. The
figure on the right indicates the envy-graph of the allocation X\prime that we obtain after applying the
update rule. We shift the bundles along the path a1 \rightarrow a2 \rightarrow a4 \rightarrow a7 and give a7 a subset Z of
Xs \cup \{ g\} that she envies and no proper subset of Z is envied by any agent. All the agents along
the path (a1, a2, a4, a7) strictly improve their valuations. All the thick edges disappear as no agent
envies a proper subset of Z (there may or may not be thin edges directed toward a7, depending on
whether a1, a5, or a6 envy Z).

set of unallocated goods. We assumed valuations to be additive here, so this means
vi(Xi) \geq vi(M)/(n+ 1) for each agent i. Thus we have

vi(Xi) \geq 
vi(M)

n+ 1
= (1 + 1/n) - 1 \cdot vi(M)

n
\geq (1 - 1/n) \cdot MMS i(n,M),

where the constraint that vi(M)/n \geq MMS i(n,M) holds for additive valuations.
We show our result for approximate-MMS allocation and our improved bound for
approximate-GMMS allocation in section 3.

1.3. Related work. Fair division of divisible resources is a classical and well-
studied subject starting from the 1940s [32]. Fair division of indivisible goods among
competing agents is a young and exciting topic with recent work on EF1 and EFX
allocations [15, 9, 30, 11, 14], approximate MMS allocations [13, 12, 2, 8, 28, 26, 23],
and approximation algorithms for maximizing Nash social welfare and generaliza-
tions [21, 20, 16, 4, 22, 5].

As mentioned earlier, Caragiannis et al. [15] introduced the notion of EFX and
it is now known that EFX allocations always exist for three agents with additive val-
uations [17]. Whether EFX allocations always exist with general valuations or with
a larger number of agents is an enigmatic open problem. It was shown in [15] that
there always exists an EF1 allocation that is also Pareto-optimal and Barman, Kr-
ishnamurthy, and Vaish in [9] showed a pseudopolynomial time algorithm to compute
such an allocation.

Applications. Fair division of goods or resources occurs in many real-world
scenarios and this is demonstrated by the popularity of the website Spliddit (http:
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A LITTLE CHARITY GUARANTEES ALMOST ENVY-FREENESS 1345

//www.spliddit.org), which implements mechanisms for fair division where users can
log in, define what needs to be divided, and enter their valuations. This website
guarantees an EF1 allocation that is also Pareto-optimal and since its launch in 2014,
it has been used tens of thousands of times [15]. We refer to [27, 30] for details
on the diverse applications for which Spliddit has been used: these range from rent
division and taxi fare division to credit assignment for an academic paper or group
project. Another such website is Fair Outcomes, (http://www.fairoutcomes.com). An
interesting application is also Course Allocate (used at The Wharton School) which
guarantees certain fairness properties to allocate courses among students [30].

1.4. Improvements with respect to the conference version. In the con-
ference version of the paper [19], we gave a pseudopolynomial time algorithm to deter-
mine an EFX allocation with bounded charity when agents have ``gross-substitute""
valuations. In the current version we show a pseudopolynomial time algorithm to
determine an EFX allocation with bounded charity for all monotone valuations. This
is realized with a relaxed definition of ``most envious agent"" (see Definition 2.3) that
helps us to implement theminimal-envied-subset oracle efficiently (see subsection 2.1).

2. Existence of an EFX-allocation with bounded charity. We prove our
main result on EFX-with-bounded-charity allocations in this section. We will define
three update rules. Each update rule takes a pair (X,P ) consisting of an allocation
X and a set P of unallocated goods (we will call P the pool) and returns a modified
pair (X \prime , P \prime ).

Each application of an update rule will ensure that either (i) the social welfare
\phi (X) =

\sum 
i\in [n] vi(Xi) of the current allocation increases or (ii) the size of the pool

decreases and the social welfare does not decrease, so | P \prime | < | P | in this case. Hence
the update process will terminate. The overall structure of the algorithm is given in
Algorithm 2.1.

Algorithm 2.1 Algorithm for computing an EFX-allocation.

Postcondition: X is EFX, | P | < n, and vi(P ) \leq vi(Xi) for all i \in [n].

1: Xi \leftarrow \emptyset for i \in [n]; P \leftarrow M ;
2: while one of the update rules shown in Algorithm 2.2 is applicable do

Invariant: X is EFX and the envy-graph GX is acyclic
3: Let U\ell be an applicable update rule;
4: (X,P )\leftarrow U\ell (X,P );
5: Decycle the envy-graph;
6: end while

In order to define our update rules, we need the concepts of envy-graph and most
envious agent for a bundle of goods. These were discussed in section 1.2 and we
formally define them below.

Definition 2.1. The envy-graph GX for an allocation X = \langle X1, X2, . . . , Xn\rangle 
has the set of agents as vertices and there is a directed edge from agent i to agent j if
and only if vi(Xi) < vi(Xj).

The notion of envy-graph was introduced in [29] and it is well-known that cycles
can be removed from the envy-graph without destroying desirable properties (see
Lemma 2.2). Thus we can maintain GX as a DAG.

For each agent s, we define the reachability component C(s) as the set of all agents
reachable from s in the envy-graph. The sources of the envy-graph are the vertices
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1346 CHAUDHURY, KAVITHA, MEHLHORN, AND SGOURITSA

with indegree zero. For ease of notation, we will use B \setminus g and B\cup g to denote B \setminus \{ g\} 
and B \cup \{ g\} , respectively.

Lemma 2.2. Let i0 \rightarrow i1 \rightarrow \cdot \cdot \cdot \rightarrow ik - 1 \rightarrow i0 be a cycle in the envy-graph. Con-
sider the allocation X \prime , where X \prime 

i\ell 
= Xi\ell +1

(indices are modulo k) for \ell \in \{ 0, . . . , k - 1\} 
and X \prime 

j = Xj for j /\in \{ i0, . . . , ik - 1\} . If X is EFX, then X \prime is also EFX. Moreover,
\phi (X \prime ) > \phi (X).

Proof. Consider any agent i. We have vi(X
\prime 
i) \geq vi(Xi) with strict inequality if i

lies on the cycle. So
\sum 

i\in [n] vi(X
\prime 
i) >

\sum 
i\in [n] vi(Xi). Thus \phi (X

\prime ) > \phi (X).

Since X \prime is just a permutation of X, for any agent j there exists some agent j\prime 

such that X \prime 
j = Xj\prime . Therefore, since X is EFX, for any good g \in Xj\prime (or equivalently

X \prime 
j) we have vi(X

\prime 
j \setminus g) = vi(Xj\prime \setminus g) \leq vi(Xi) \leq vi(X

\prime 
i). Thus X

\prime is also EFX.

Let S \subseteq M . Suppose there exists an agent who considers S more valuable than
her own bundle. Then we will call S an envied set. The following definition formalizes
the notion of ``most envious agent.""

Definition 2.3. Let Z be an inclusionwise minimal envied subset of S, i.e.,
(1) there exists an agent i such that vi(Z) > vi(Xi) and (2) for all j \in [n] we have
vj(Xj) \geq vj(Z

\prime ) for all Z \prime \subset Z. The agent i is called a most envious agent of S.

We are now ready to present our three update rules U0, U1, and U2, in Algo-
rithm 2.2.

Rule U\bfzero . Rule U0 is the easiest of the update rules. It is applicable whenever
adding a good from the pool to some source of GX does not destroy the EFX-property
(see Algorithm 2.2).

Lemma 2.4 (Rule U0).
(a) Rule U0 returns an EFX allocation. An application of the rule does not de-

crease social welfare and decreases the size of the pool.
(b) If rule U0 is not applicable, then for any source i of GX and good g \in P ,

there is an agent j \not = i such that vj(Xi \cup g) > vj(Xj). In particular, an
inclusionwise minimal envied subset of Xi \cup g has size at most | Xi| .

Proof. The first part of (a) follows directly from the precondition of the rule. The
second part holds since the valuations are monotone and because | P \prime | = | P |  - 1.

The first sentence in part (b) is obvious. We come to the second sentence. Since
adding g to Xi destroys the EFX-property, there must be some g\prime \in Xi \cup g and some
j \in [n] such that vj(Xi \cup g \setminus g\prime ) > vj(Xj) for some j \in [n]. Thus an inclusionwise
minimal envied subset of Xi \cup g has size at most | Xi| .

Rule U\bfone . Rule U1 is applicable whenever there is an agent who values the pool
more highly than her current bundle (see Algorithm 2.2).

Lemma 2.5 (Rule U1). Rule U1 increases the social welfare and returns an EFX
allocation.

Proof. Since there is an agent who values the pool more highly than her own
bundle, there is an inclusionwise minimal envied subset Z of P and an agent i such
that vi(Xi) < vi(Z). Let X \prime be the allocation defined in Algorithm 2.2, line 7. Then
vi(X

\prime 
i) > vi(Xi) and vj(X

\prime 
j) = vj(Xj) for j \not = i. Thus \phi (X \prime ) > \phi (X). It remains

to show that the allocation X \prime is EFX, i.e., for every pair of agents j and k and any
good g \in X \prime 

k, we have vj(X
\prime 
k \setminus g) \leq vj(X

\prime 
j).

Since X is EFX, this is obvious if neither j nor k is equal to i. If j = i, then
vi(X

\prime 
i) > vi(Xi) \geq vi(Xk \setminus g) = vi(X

\prime 
k \setminus g) for all g \in X \prime 

k (or equivalently g \in Xk).
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A LITTLE CHARITY GUARANTEES ALMOST ENVY-FREENESS 1347

Algorithm 2.2 The update rules.

1: function U0(allocation X, pool P )
Precondition: There is a good g \in P and an agent i such that allocating g

to i results in an EFX allocation.
2: Allocate g to i, i.e., X \prime 

i \leftarrow Xi \cup g, P \prime \leftarrow P \setminus g, and X \prime 
j = Xj for j \not = i.

3: return (X \prime , P \prime ).
4: end function

5: function U1(allocation X, pool P )
Precondition: There is an agent k such that vk(P ) > vk(Xk).

6: Let i be a most envious agent of P ; let Z be an inclusionwise minimal envied
subset of P such that i satisfies vi(Z) > vi(Xi).

7: Set X \prime 
i = Z and X \prime 

j = Xj for j \not = i.
8: Set P \prime = Xi \cup (P \setminus Z).
9: return (X \prime , P \prime ).

10: end function

11: function U2(allocation X, pool P )
Precondition: There is an \ell \geq 1, distinct goods g0, g1, . . . , g\ell  - 1 in P ,

distinct sources s0, s1, . . . , s\ell  - 1 ofGX , and distinct agents t0,
t1,. . . , t\ell  - 1 such that ti is a most envious agent ofXsi\cup gi and
ti \in C(si+1) for 0 \leq i \leq \ell  - 1 (indices are to be interpreted
modulo \ell ).

12: Let Zi be an inclusionwise minimal envied subset ofXsi\cup gi such that vti(Zi) >
vti(Xti) for 0 \leq i \leq \ell  - 1.

13: Set P \prime =
\bigl( 
P \setminus \cup \ell  - 1

i=0\{ gi\} 
\bigr) \bigcup \ell  - 1

i=0 ((Xsi \cup gi) \setminus Zi).
14: Let ui

0 \rightarrow \cdot \cdot \cdot \rightarrow ui
mi

be the path of length mi from si = ui
0 to ti - 1 = ui

mi
in

C(si) for 0 \leq i \leq \ell  - 1.
15: Set X \prime 

ui
k
= Xui

k+1
for all k \in \{ 0, . . . ,mi  - 1\} and all i \in \{ 0, . . . , \ell  - 1\} .

16: Set X \prime 
ti = Zi for all i \in \{ 0, . . . , \ell  - 1\} .

17: Set X \prime 
j = Xj for all other j.

18: return (X \prime , P \prime ).
19: end function

Finally, we consider k = i. Since Z is an inclusionwise minimal envied subset
of P , we have vj(X

\prime 
j) = vj(Xj) \geq vj(Z \setminus g) = vj(X

\prime 
i \setminus g) for any g \in Z, where

vj(Xj) \geq vj(Z \setminus g) follows from the inclusionwise minimality of Z as an envied set.

Rule U\bftwo . Rule U2 is our most complex rule. It is applicable if for some \ell \geq 1,
there are distinct goods g0, g1, . . . , g\ell  - 1 in P , distinct sources s0, s1, . . . , s\ell  - 1 of GX ,
and distinct agents t0, t1,. . . , t\ell  - 1 such that for each i, (1) ti is a most envious agent
of Xsi \cup gi and (2) ti is reachable from si+1 (indices are to be interpreted modulo \ell ).
We first show that rule U2 is always applicable when rule U0 is not applicable and the
pool contains at least n goods.

Lemma 2.6. If | P | \geq n and rule U0 is not applicable, then there is an \ell \geq 1,
distinct goods g0, g1, . . . , g\ell  - 1 in P , distinct sources s0, s1, . . . , s\ell  - 1 of GX , and distinct
agents t0, t1, . . . , t\ell  - 1 such that ti is a most envious agent of Xsi \cup gi and ti \in C(si+1)
for i \in \{ 0, . . . , \ell  - 1\} (indices are modulo \ell ).

Proof. Since rule U0 is not applicable, for every source s of GX and every good
g \in P , we have vj(S

\prime ) > vj(Xj) for some S\prime \subset Xs \cup g and j \in [n]. Let s0 be an

© 2021 Bhaskar Ray Chaudhury, Telikepalli Kavitha, Kurt Mehlhorn, Alkmini Sgouritsa

D
ow

nl
oa

de
d 

08
/0

5/
22

 to
 1

03
.2

7.
9.

24
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



1348 CHAUDHURY, KAVITHA, MEHLHORN, AND SGOURITSA

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

s0 s1 s2

Xs2 \cup g2Xs1 \cup g1Xs0 \cup g0

t2

t1

t0

C(s0)

C(s2)
C(s1)

Fig. 3. We have ti as a most envious agent of Xsi \cup gi. Recall that C(si) is the set of all
agents reachable from s in the envy-graph. Neither t0 \in C(s0) nor t1 \in C(s0) \cup C(s1). We have
t2 \in C(s0) \cup C(s1) \cup C(s2). Note that j = 1 is the largest index in \{ 0, 1, 2\} such that t2 \in C(sj).
The cycle (see the proof of Lemma 2.6) is defined by s1, s2, g1, g2, t1, and t2.

arbitrary source of GX and g0 be an arbitrary good in P . Construct a sequence of
triples (si+1, gi+1, ti), i \geq 0 defined as follows. Assume we have defined si and gi.
Let ti be a most envious agent of Xsi \cup gi. If ti \not \in C(s0) \cup \cdot \cdot \cdot \cup C(si), let si+1 be
a source such that ti \in C(si+1) and let gi+1 be a good in P distinct from g0 to gi.
If ti \in C(s0) \cup \cdot \cdot \cdot \cup C(si), then stop the construction of the sequence and let j be
the maximum index in \{ 0, . . . , i\} such that ti \in C(sj). Set \ell = i  - j + 1 and return
sj , . . . , si, gj , . . . , gi and tj , . . . , ti;

8 see Figure 3 for an illustration.
The construction is well-defined since | P | \geq n and hence we cannot run out of

goods. The sources and goods are pairwise distinct by construction. The agents t0
to ti - 1 are also distinct by construction. Finally, agent ti is distinct from any agent
tk for j \leq k < i since ti \in C(sj) and by definition, tk /\in C(s0) \cup \cdot \cdot \cdot \cup C(sk) and so
tk /\in C(sj).

For each i, let ui
0 \rightarrow ui

1 \rightarrow \cdot \cdot \cdot \rightarrow ui
mi

be the path of length mi from si = ui
0 to

ti - 1 = ui
mi

in C(si). Rule U2 assigns (i) X \prime 
ui
k
= Xui

k+1
for all k \in \{ 0, . . . ,mi  - 1\} and

all i \in \{ 0, . . . , \ell  - 1\} and (ii) X \prime 
ti = Zi for all i \in \{ 0, . . . , \ell  - 1\} , where Zi is defined in

Algorithm 2.2 (see line 12). For all other j, we have X \prime 
j = Xj .

Lemma 2.7 (Rule U2). Rule U2 increases social welfare and returns an EFX al-
location.

Proof. We first observe that the valuations of the agents for their bundles have
either increased or remained the same (since either the agents are left with their old
bundles or assigned bundles that they envied). In particular, the valuations of all the

agents in
\bigcup \ell  - 1

i=0

\bigcup mi

k=0\{ ui
k\} for their bundles are strictly larger, where the vertices ui

k

are defined above. Thus \phi (X \prime ) > \phi (X).
It remains to show that the allocation X \prime is EFX, i.e., for every pair of agents j

and k and any good g \in X \prime 
k we have vj(X

\prime 
k \setminus g) \leq vj(X

\prime 
j). Let T = \{ t0, t1, . . . , t\ell  - 1\} .

For every agent k /\in T we have X \prime 
k = Xk\prime for some k\prime . Now consider two cases

depending on k:
\bullet k /\in T : Note that the agents' valuation for their current bundle (in X \prime ) is
at least as good as their valuation for their old bundle (in X). We have
vj(X

\prime 
j) \geq vj(Xj) \geq vj(Xk\prime \setminus g) = vj(X

\prime 
k \setminus g) for any g \in X \prime 

k (or equivalently,
g \in Xk\prime ).

8We took j to be the maximum index such that ti \in C(sj) so that the cycle defined by sj , . . . , si,
gj , . . . , gi and tj , . . . , ti is simple.
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A LITTLE CHARITY GUARANTEES ALMOST ENVY-FREENESS 1349

\bullet k \in T : Let k = ti for some i. We have vj(X
\prime 
j) \geq vj(Xj) \geq vj(Zi \setminus g)

for any g \in Zi (by the inclusionwise minimality of Zi as an envied set) and
vj(Zi \setminus g) = vj(X

\prime 
ti \setminus g) = vj(X

\prime 
k \setminus g) for any g \in X \prime 

k.

We can now summarize. Let V = maxi vi(M) be the maximum valuation of
any agent and \Delta = mini min\{ | vi(T )  - vi(S)| : S, T \subseteq M and vi(S) \not = vi(T )\} be
the minimum difference between distinct valuations. Each application of rule U1 or
rule U2 increases the social welfare by at least \Delta and hence there can be at most
nV/\Delta applications of these rules. Each application of rule U0 decreases the size of the
pool by one and so there can be at most m  - 1 successive applications of rule U0 at
any intermediate stage in the algorithm. Hence we can conclude that the number of
iterations of Algorithm 2.1 is at most mnV/\Delta +m. Thus we have shown the following
theorem.

Theorem 2.8. For monotone valuations, there is always an allocation X and a
pool P of unallocated goods such that

\bullet X is EFX,
\bullet vi(Xi) \geq vi(P ) for all agents i, and
\bullet | P | is less than the number of sources in the envy-graph; in particular, we
have | P | < n.

Algorithm 2.1 determines such an allocation in at most mnV/\Delta +m iterations.

2.1. Finding an inclusionwise minimal envied subset. We now describe
how to implement a minimal-envied-subset oracle efficiently, i.e., given an envied set
S \subseteq M , we need to efficiently find a subset Z of S that is envied by some agent and
no proper subset of Z is envied by any agent. Algorithm 2.3 finds such a set Z \subseteq S
for monotone valuations.

Algorithm 2.3 Algorithm for finding an inclusionwise minimal envied subset.

Precondition: There is an agent who values S \subseteq M more than her bundle.
Postcondition: Z \subseteq S such that there is some agent i with vi(Z) > vi(Xi)

and we have vj(Xj) \geq vj(Z
\prime ) for all Z \prime \subset Z and j \in [n].

1: Z = S;
2: for every agent i do
3: for every good g \in Z do
4: if vi(Xi) < vi(Z \setminus g) then
5: Z = Z \setminus g;
6: end if
7: end for
8: end for
9: Return Z.

In Algorithm 2.3, if the ``if condition"" is not invoked for any agent i and good
g \in Z, then Z is an inclusionwise minimal envied subset. Suppose agent i envies Z \setminus g
for some g \in Z. Then we continue our check with Z \setminus g as the new Z. Since the
new Z is a subset of the old Z, observe that for each agent i \in [n] and each good
g \in Z, our algorithm needs to check exactly once if vi(Xi) \geq vi(Z \setminus g) or not. Thus
our algorithm makes nm value queries. We can conclude the following theorem.

Theorem 2.9. For monotone valuations, we can determine an allocation X and
a pool of unallocated goods P that satisfies the three conditions in Theorem 2.8 using
at most mn \cdot (mnV/\Delta +m) value queries.
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1350 CHAUDHURY, KAVITHA, MEHLHORN, AND SGOURITSA

2.2. An FPTAS to determine an ``almost"" desired allocation. Algo-
rithm 2.1 is pseudopolynomial, since the increase in individual valuations of the agents
when we perform the update rules could be very small. Suppose we just wanted an
``almost"" EFX property, i.e., given any \varepsilon > 0, for every pair of agents i and j, we
are happy to ensure that (1 + \varepsilon ) \cdot vi(Xi) \geq vi(Xj \setminus \{ g\} ) for all g \in Xj and also
(1 + \varepsilon ) \cdot vi(Xi) \geq vi(P ) for every i. We now show an algorithm that determines such
an allocation with poly(n,m, 1/\varepsilon , log(V/\Delta )) many value queries.

This algorithm is obtained from our previous algorithm by making appropriate
changes to the definitions of (i) inclusionwise minimal envied subset, (ii) most envious
agent, and (iii) update rules U0, U1, and U2. We now describe these changes.

Given a set S such that there is an agent k with (1 + \varepsilon ) \cdot vk(Xk) < vk(S), we
say Z \subseteq S is an inclusionwise minimal envied subset if there is an agent i such that
(1+ \varepsilon ) \cdot vi(Xi) < vi(Z) and for all agents j \in [n], we have (1+ \varepsilon ) \cdot vj(Xj) \geq vj(Z

\prime ) for
any Z \prime \subset Z, i.e., for all proper subsets of Z. Agent i is called a most envious agent
of the set S.

Note that an inclusionwise minimal envied subset Z of S and a corresponding
most envious agent (as defined above) can be determined using nm value queries by
changing the ``if"" condition in Algorithm 2.3 from checking if vi(Xi) < vi(Z \setminus g) to
checking if (1 + \varepsilon ) \cdot vi(Xi) < vi(Z \setminus g). We now describe the appropriate changes to
the update rules U0, U1, and U2.

\bullet Rule U0: This rule is applicable whenever there is an unallocated good g and
a source s in the envy-graph GX such that adding g to s does not destroy the
``almost"" EFX property, i.e., for all j \in [n] \setminus \{ s\} , we have (1 + \varepsilon ) \cdot vj(Xj) \geq 
vj((Xs \cup g) \setminus g\prime ) for all g\prime \in Xs \cup g. Rule U0 allocates g to s (as done in the
function U0 in Algorithm 2.2).

\bullet Rule U1: This rule is applicable whenever there is an agent i such that (1 +
\varepsilon ) \cdot vi(Xi) < vi(P ). Rule U1 behaves exactly the same way as the function U1

in Algorithm 2.2---the only changes are in the modified definitions of a most
envious agent and an inclusionwise minimal envied subset.

\bullet Rule U2: The preconditions of rule U2 are exactly same as in Algorithm 2.2,
but with the modified definition of a most envious agent. Rule U2 behaves
exactly the same way as the function U2 in Algorithm 2.2---the only changes
are in the modified definitions of a most envious agent and an inclusionwise
minimal envied subset.

The algorithm. We now argue that with these changes, we can determine an
``almost"" EFX allocation with bounded charity using poly(m,n, 1/\varepsilon , log(V/\Delta )) many
value queries. Our algorithm always maintains an allocation where for every pair of
agents i and j, we have (1+ \varepsilon ) \cdot vi(Xi) \geq vi(Xj \setminus g) for all g \in Xj . If any of the three
update rules U0, U1, U2 is applicable, then we apply that rule and decycle the envy-
graph. Observe that application of any of these update rules returns an allocation X
such that for every pair of agents (i, j), we have (1 + \varepsilon ) \cdot vi(Xi) \geq vi(Xj \setminus g) for all
g \in Xj . Thus we maintain the invariant of the algorithm.

Bounding the number of iterations. The application of any of these update rules
and the subsequent envy-cycle elimination does not decrease the valuation of any
agent for her bundle. Moreover, each application U1 or U2 will ensure that at least
one agent's valuation for her bundle either increases from 0 to \Delta or by a multiplicative
factor of 1+\varepsilon . So the total number of applications of U1 and U2 is O(n \cdot log1+\varepsilon (V/\Delta )).
Since each application of U0 reduces the size of the pool by one, we cannot have more
than m consecutive applications of U0. Hence the total number of iterations of the
algorithm is O(mn \cdot log1+\varepsilon (V/\Delta )), which is O((mn/\varepsilon ) \cdot log(V/\Delta )).
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A LITTLE CHARITY GUARANTEES ALMOST ENVY-FREENESS 1351

When the preconditions of the update rules are no longer valid, we arrive at
our desired allocation. Since each iteration involves O(mn) value queries, we can
determine our desired allocation with O(m2n2/\varepsilon \cdot log(V/\Delta )) value queries. Thus we
can conclude the following theorem.

Theorem 2.10. For monotone valuations, given any \varepsilon > 0, using O(m2n2/\varepsilon \cdot 
log(V/\Delta )) value queries, we can find an allocation X = \langle X1, X2, . . . , Xn\rangle and a pool
P of unallocated goods such that

\bullet for any pair of agents i and j, we have (1 + \varepsilon ) \cdot vi(Xi) \geq vi(Xj \setminus g) for all
g \in Xj,

\bullet for any agent i, we have (1 + \varepsilon ) \cdot vi(Xi) \geq vi(P ), and
\bullet | P | < n.9

2.3. New proof of a result from [30] for identical valuations. For agents
with identical (monotone) valuations, it was shown by Plaut and Roughgarden [30]
that an allocation that maximizes the minimum valuation, then maximizes the size
of this bundle, then maximizes the second minimum valuation, then maximizes the
size of this bundle, and so on is EFX. Thus a complete allocation that is EFX always
exists when all the agents have identical valuations.

We now show that Algorithm 2.1 gives another proof of the above result. Recall
that Algorithm 2.1 consists of applying three update rules U0, U1, U2---whichever of
these is applicable. We will now show that when all the agents have identical valua-
tions and rule U0 is not applicable, then the precondition of rule U2 is satisfied as long
as there is some unallocated good. Let X = \langle X1, . . . , Xn\rangle be the current allocation
and P = M \setminus \cup ni=1Xi be the set of unallocated goods in X.

Lemma 2.11. Let s be any source vertex in the envy-graph GX . If | P | \geq 1 and
rule U0 is not applicable, then s can be chosen as a most envious agent of Xs \cup g for
any g \in P .

Proof. Let g \in P and s be any source in the envy-graph GX . Since rule U0 is
not applicable, there is an agent t such that v(Xt) < v(S\prime ) for some S\prime \subset S = Xs \cup g,
where v is the common valuation function of all agents. Let Z \subset S be an inclusionwise
minimal envied subset of S such that v(Xt) < v(Z). Since s is a source in GX , we
have v(Xs) \leq v(Xt). So v(Xs) < v(Z); thus s can be chosen as a most envious agent
of Xs \cup g.

Lemma 2.11 implies that while P \not = \emptyset , either rule U0 or rule U2 is applicable.
Whenever we apply rule U2, we add any good g in P to the bundle of a source s
in GX and determine an inclusionwise minimal envied set Z \subset Xs \cup g. Note that
v(Z) > v(Xs). We then throw the goods in (Xs \cup g) \setminus Z back into the pool P and
set Xs = Z. This makes agent s strictly better-off and no agent is worse-off; thus we
have made progress. So when Algorithm 2.1 terminates, we have an EFX allocation
with P = \emptyset . Thus we have a complete allocation X = \langle X1, . . . , Xn\rangle that is EFX.

3. Guarantees on efficiency and other notions of fairness. In this section
we assume that all agents have additive valuations. We show that a minor variant
of our algorithm finds an allocation that satisfies all the conditions of Theorem 2.8
along with a good guarantee on Nash social welfare and MMS.

9Observe that (1+ \varepsilon ) \cdot vi(Xi) \geq vi(Xj \setminus g) for all g \in Xj implies that vi(Xi) \geq (1 - \varepsilon ) \cdot vi(Xj \setminus g)
for all g \in Xj and (1 + \varepsilon ) \cdot vi(Xi) \geq vi(P ) implies that vi(Xi) \geq (1  - \varepsilon ) \cdot vi(P ) (as 1

1+\varepsilon 
\geq 1  - \varepsilon ).

Therefore, Theorem 2.10 implies that we can determine a (1  - \varepsilon )-EFX allocation with bounded

charity with O(n
2m2

\varepsilon 
\cdot log(V

\Delta 
)) value queries.
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1352 CHAUDHURY, KAVITHA, MEHLHORN, AND SGOURITSA

Guarantee of high Nash social welfare. We claimed in section 1 that for
additive valuations, it can also be ensured that for each i, we have vi(Xi) \geq 1

2 \cdot vi(X
\ast 
i ),

where X\ast = \langle X\ast 
1 , . . . , X

\ast 
n\rangle is an optimal Nash social welfare allocation and X is the

allocation in Theorem 2.8. This is easy to see from Algorithm 2.1:
\bullet Rather than initializeXi = \emptyset , we will initializeXi to the bundle corresponding
to the allocation determined by the algorithm in [14].

So we have vi(Xi) \geq 1
2 \cdot vi(X

\ast 
i ) to begin with and this is a partial EFX allocation. As

the algorithm progresses, our invariant is that vi(Xi) never decreases for any i. So if
X \prime = \langle X \prime 

1, . . . , X
\prime 
n\rangle is the final allocation computed by our algorithm, then we have

vi(X
\prime 
i) \geq 1

2 \cdot vi(X
\ast 
i ) for all i \in [n].

Proposition 3.1. Given a set N of agents with additive valuations and a set M
of goods, there exists an allocation X = \langle X1, . . . , Xn\rangle and a pool P of unallocated
goods that satisfy all the conditions of Theorem 2.8 and vi(Xi) \geq 1

2vi(X
\ast 
i ) for all

i \in N , where X\ast = \langle X\ast 
1 , . . . , X

\ast 
n\rangle is an optimal Nash social welfare allocation.

3.1. An approximate MMS allocation if \bfitP is large. We now show that
if | P | (the number of unallocated goods in our allocation) is sufficiently large, then
our EFX allocation X has a very good MMS guarantee. Recall that our algorithm
continues till | P | is smaller than the number of sources in the envy-graph GX and
recall that sources are unenvied agents. In particular, if | P | = n - 1, then the number
of sources in GX is n, so no agent envies another. That is, for each i, we have
vi(Xi) \geq vi(Xj) for all j \in [n]. Moreover, vi(Xi) \geq vi(P ). So we have

vi(Xi) \geq 
vi(M)

n+ 1

=

\biggl( 
1 +

1

n

\biggr)  - 1

\cdot vi(M)

n

\geq 
\biggl( 
1 +

1

n

\biggr)  - 1

\cdot MMS i(n,M),

where for every agent i, the inequality MMS i(n,M) \leq vi(M)/n holds for additive
valuations. We formalize the above intuition in Theorem 3.3. The following propo-
sition from [23] will be useful. It states that if we exclude any set of agents and at
most the same number of any goods from N and M , respectively, the MMS of any
remaining agent can only increase.

Proposition 3.2 ([23]). Let N be a set of n agents with additive valuations and
M be a set of m goods. If N \prime \subseteq N and M \prime \subseteq M are such that | N \setminus N \prime | \geq | M \setminus M \prime | ,
then for any agent i \in N \prime , we have MMS i(n

\prime ,M \prime ) \geq MMS i(n,M), where n\prime = | N \prime | .
Theorem 3.3. Given a set N of n agents with additive valuations and a set M of

m goods, there exists an allocation X = \langle X1, . . . , Xn\rangle and set P of unallocated goods
that satisfies

\bullet the three conditions stated in Theorem 2.8;
\bullet vi(Xi) \geq 1

2vi(X
\ast 
i ) for all i \in N , where X\ast is an optimal Nash social welfare

allocation;
\bullet vi(Xi) \geq MMS i(n,M)/

\bigl( 
2 - k

n

\bigr) 
for every i \in N , where k = | P | .

Proof. Let (X,P ) be the allocation guaranteed by Proposition 3.1. Hence the
first two conditions given in the theorem statement are satisfied by (X,P ). So what
we need to show now is that for any agent i, we have vi(Xi) \geq MMS i(n,M)/

\bigl( 
2 - k

n

\bigr) 
.
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A LITTLE CHARITY GUARANTEES ALMOST ENVY-FREENESS 1353

We fix some agent i and let N \prime \subseteq N be the set of agents consisting of all sources
of GX , agent i, and all other agents j with | Xj | \geq 2. Let M \prime be the set of goods
allocated to the agents in N \prime . Observe that every agent in N \setminus N \prime is allocated at
most one good and so | N \setminus N \prime | \geq | M \setminus (M \prime \cup P )| . By Proposition 3.2, it holds that
MMS i(n

\prime ,M \prime \cup P ) \geq MMS i(n,M), where n\prime = | N \prime | . Thus, it suffices to show that
vi(Xi) \geq MMS i(n

\prime ,M \prime \cup P )/
\bigl( 
2 - k

n

\bigr) 
.

Consider any agent j \in N \prime with | Xj | \geq 2. Because X is EFX, it holds that
vi(Xi) \geq vi(Xj \setminus \{ g\} ) for all g \in Xj . Since the valuations are additive, we have

vi(Xi) \geq 
\biggl( 
1 - 1

| Xj | 

\biggr) 
\cdot vi(Xj) \geq 

1

2
\cdot vi(Xj).

We know the following inequalities hold:

vi(Xi) \geq vi(P ),(3.1)

vi(Xi) \geq vi(Xj) for all j that were sources in GX ,(3.2)

2vi(Xi) \geq vi(Xj) for all other j \in N \prime .(3.3)

Recall that the number of sources is at least | P | + 1 = k + 1. Summing up all
inequalities in (3.1)--(3.3) and using the fact that vi is additive, we have

(2(n\prime  - (k + 1)) + k + 2) \cdot vi(Xi) \geq vi(M
\prime \cup P ).

Hence we have

vi(Xi) \geq 
vi(M

\prime \cup P )

2n\prime  - k

=
vi(M

\prime \cup P )

n\prime \cdot n\prime 

2n\prime  - k

\geq MMS i(n
\prime ,M \prime \cup P ) \cdot n\prime 

2n\prime  - k
(since vi is additive)

= MMS i(n
\prime ,M \prime \cup P )/

\bigl( 
2 - k

n\prime 

\bigr) 
\geq MMS i(n

\prime ,M \prime \cup P )/
\bigl( 
2 - k

n

\bigr) 
(since n\prime \leq n).

Thus vi(Xi) \geq MMS i(n,M)/
\bigl( 
2 - k

n

\bigr) 
for every i \in N , where k = | P | .

3.2. An improved bound for approximate-GMMS. As mentioned in sec-
tion 1, a new notion of fairness called GMMS was recently introduced by Barman et
al. [7]. We formally define a GMMS allocation below.

Definition 3.4. Given a set N of n agents and a set M of m goods, an allocation
X = \langle X1, X2, . . . , Xn\rangle is \alpha -GMMS if for every N \prime \subseteq N and all i \in N \prime , we have

vi(Xi) \geq \alpha \cdot MMS i(n
\prime ,

\bigcup 
j\in N \prime 

Xj), where n\prime = | N \prime | .

Observe that a GMMS allocation is also an MMS allocation. Since MMS alloca-
tions do not always exist in a given instance [28], GMMS allocations also need not
always exist. Interestingly, 1

2 -GMMS allocations always exist [7]. We now describe
how to modify our allocation to result in a complete allocation that is 4

7 -GMMS and
also 1

2 -EFX. An allocation Y = \langle Y1, . . . , Yn\rangle is 1
2 -EFX if for any pair of agents i, j, we

have vi(Yi) \geq 1
2 \cdot vi(Yj \setminus \{ g\} ) for any g \in Yj . Plaut and Roughgarden [30] showed that
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1354 CHAUDHURY, KAVITHA, MEHLHORN, AND SGOURITSA

when all agents have subadditive valuations, a 1
2 -EFX allocation always exists. Theo-

rem 2.8 along with the simple modification of allocation X to allocation Y described
below gives an alternative proof that a 1

2 -EFX allocation always exists for subadditive
valuations.

Let X = \langle X1, . . . , Xn\rangle be the allocation and P be the pool of unallocated goods
that satisfy the conditions of Proposition 3.1. Without loss of generality, assume
that agent 1 is a source in the envy-graph GX . Define the complete allocation Y =
\langle Y1, . . . , Yn\rangle as follows:

\ast Y1 = X1 \cup P and Yi = Xi for all i \not = 1.
Theorem 3.5 shows that Y is our desired allocation. The proof of Theorem 3.5

is similar to [1, Proposition 3.4]. We also remark that one can use the proof of [1,
Proposition 3.4] to show that any EFX allocation is 4/7-GMMS. However, note that
Y is not necessarily an EFX allocation. But it has sufficiently nice properties so that
we can still show that it is 4/7-GMMS. For the sake of convenience, we will refer to
goods in the proof of Theorem 3.5 as items.

Theorem 3.5. Given a set N of n agents with additive valuations and a set M
of m items, the allocation Y defined above satisfies the following:

\bullet Y is 4
7 -GMMS and 1

2 -EFX.
\bullet vi(Yi) \geq 1

2vi(X
\ast 
i ) for all i \in N , where X\ast is the optimal Nash social welfare

allocation.10

Proof. Observe that the bound on Nash social welfare holds for allocation X
and thus for allocation Y (since vi(Yi) \geq vi(Xi) for all i \in [n]). The proof that
Y is 1

2 -EFX is straightforward. Recall that Y1 = X1 \cup P and vi(Xi) \geq vi(X1) and
vi(Xi) \geq vj(P ) for all i \in [n]. Thus for any subadditive valuation vi, we have vi(Y1) \leq 
vi(X1)+ vi(P ) \leq 2vi(Yi). For j \not = 1, we have vi(Yi) \geq vi(Xi) \geq vi(Xj \setminus g) = vi(Yj \setminus g)
for all g \in Yj . Hence Y is 1

2 -EFX.
What we need to show now is the guarantee on GMMS. That is, we need to show

that for every \widetilde N \subseteq N and all i \in \widetilde N , we have vi(Yi) \geq 4
7MMS i(\widetilde n, \widetilde M), where \widetilde n = | \widetilde N | 

and \widetilde M =
\bigcup 

j\in \widetilde N Yj .

Fix some i \in \widetilde N . Define N \prime to be the subset of \widetilde N that contains i and all agents
that have been allocated at least two items in Y , i.e., j \in N \prime if and only if j = i or
| Yj | \geq 2. Let M \prime =

\bigcup 
j\in N \prime Yj .

Note that Y allocates all items of \widetilde M \setminus M \prime to agents in \widetilde N \setminus N \prime . Since every

agent in \widetilde N \setminus N \prime has been allocated at most one item, we have | \widetilde N \setminus N \prime | \geq | \widetilde M \setminus M \prime | .
Proposition 3.2 tells us that MMS i(n

\prime ,M \prime ) \geq MMS i(\widetilde n, \widetilde M), where n\prime = | N \prime | . Thus it
suffices to show vi(Yi) \geq 4/7 \cdot MMS i(n

\prime ,M \prime ).
For j \in N \prime , call a bundle Yj ``good"" if j \in \{ 1, i\} or | Yj | = 3; call it ``bad""

otherwise. Thus Yj is bad if j /\in \{ 1, i\} and | Yj | = 2. Call items in good bundles
``good"" and items in bad bundles ``bad."" Let x be the number of bad items in M \prime .
Since the bad items are contained in bundles of size two, the good items in M \prime come
from n\prime  - x/2 good bundles of Y . As long as x > n\prime , we will apply a reduction
step. Each reduction step will reduce the number of bad items in M \prime by two and
the number of agents by one, will not decrease the MMS i-value, and will leave the
quantity n\prime  - x/2 and set of good items in M \prime unchanged.

10Related results were independently obtained by Garg and Taki in [24], where it was shown that
for additive valuations, there is an EFX-allocation after donating at most n  - 1 items to charity.
However, no bound on the value of the items donated to charity was shown. Thus a 4/7-GMMS-
allocation after removing n - 1 items from the original set of items was obtained by them.
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A LITTLE CHARITY GUARANTEES ALMOST ENVY-FREENESS 1355

Let Z = \langle Z1, Z2, . . . Zn\prime \rangle be an optimal MMS partition for agent i of the set M \prime 

of items. If there are more than n\prime bad items in M \prime , then there is a set Zk with at
least two bad items, say, g1 and g2. We distribute the items in Zk \setminus \{ g1, g2\} arbitrarily
among the other sets in Z. So we have a partition of the set M \prime \setminus \{ g1, g2\} of items into
n\prime  - 1 many bundles. The value for agent i of any remaining bundle did not decrease.
We set M \prime to M \prime \setminus \{ g1, g2\} and decrement n\prime . Note that we reduced the number
of bad items by two, the number of agents by one, did not decrease MMS i(n

\prime ,M \prime ),
and the good items in M \prime still come from the n\prime  - x/2 good bundles in Y . We keep
repeating this reduction until M \prime contains at most n\prime bad items. At this point, we
have a set M \prime of items and an integer n\prime with the following properties:

1. The number x of bad items in M \prime is at most n\prime .
2. MMS i(n

\prime ,M \prime ) \geq MMS i(\widetilde n, \widetilde M).
3. The set of good items in M \prime has not changed. The good items come from

n\prime  - x/2 good bundles in Y .
We will next relate the value of good and bad items to the value of Yi.

Claim 3.6. We have the following:
(a) For any bad item g, vi(g) \leq vi(Yi).
(b) If j \not = 1 and Yj is a good bundle, then vi(Yj) \leq 3/2 \cdot vi(Yi).

The proof of Claim 3.6 is given below. Now we are ready to show the bound on
GMMS. We will show that vi(Yi) \geq 4

7vi(M
\prime )/n\prime . Since vi(M

\prime )/n\prime \geq MMS i(n
\prime ,M \prime ) \geq 

MMS i(\widetilde n, \widetilde M), we get the desired bound.
We have x bad items in M \prime . The good items in M \prime come from n\prime  - x/2 good

bundles. Also x \leq n\prime . The total value of the good items for agent i is at most

3

2

\Bigl( 
n\prime  - x

2
 - 2

\Bigr) 
\cdot vi(Yi) + 2vi(Yi) + vi(Yi) =

3

2

\Bigl( 
n\prime  - x

2

\Bigr) 
\cdot vi(Yi).

This is because either (i) 1 \in N \prime and then there are n\prime  - x/2 - 2 good bundles different
from Y1 and Yi or (ii) 1 /\in N \prime and so there are n\prime  - x/2  - 1 good bundles different
from Yi. We know from Claim 3.6 that each good bundle Yj , where j \not = 1, has value
at most 3/2 \cdot vi(Yi) and we showed earlier that Y1 has value at most 2vi(Yi).

Also, the total value of the bad items for agent i is at most x \cdot vi(Yi), since there
are x many bad items and each bad item is worth at most vi(Yi) (by Claim 3.6).
Therefore,

vi(M
\prime ) = vi(bad items in M \prime ) + vi(good items in M \prime )

\leq x \cdot vi(Yi) +
3

2

\Bigl( 
n\prime  - x

2

\Bigr) 
\cdot vi(Yi)

=
6n\prime + x

4
\cdot vi(Yi)

\leq 7n\prime 

4
\cdot vi(Yi).

Proof of Claim 3.6. We prove (a) and (b) below.
(a) Let Yj = \{ g, g\prime \} be the bundle containing g. Since j \not = 1 (by the definition of

a bad item), vi(Yi) \geq vi(Xi) \geq vi(Xj \setminus g\prime ) = vi(Yj \setminus g\prime ) = vi(g).
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1356 CHAUDHURY, KAVITHA, MEHLHORN, AND SGOURITSA

(b) Let g \in Yj be such that vi(g) is minimal. Then vi(Yj \setminus g) \leq vi(Yi) and
vi(g) \leq vi(Yj)/| Yj | . Thus

vi(Yi) \geq 
\biggl( 
1 - 1

| Yj | 

\biggr) 
\cdot vi(Yj) \geq 

\biggl( 
1 - 1

3

\biggr) 
\cdot vi(Yj)

=
2

3
\cdot vi(Yj).

This finishes the proof of Claim 3.6.

4. Conclusions and open problems. We studied the existence of EFX alloca-
tions when agents have monotone valuations. We showed that we can ensure such an
allocation always exists when we donate a small number of goods that nobody envies
to charity. The major open problem here is whether complete EFX allocations always
exist. Plaut and Roughgarden [30] remarked that an instance with no complete EFX
allocation may be easier to find in the general setting of monotone valuations. Our
result on ``almost-EFX"" allocations for monotone valuations allows one to hope that
complete EFX allocations always exist, at least for more structured valuations such
as additive.

We also showed that we get guarantees in terms of other notions of fairness
when agents have additive valuations. To the best of our knowledge, allocations
with good guarantees (i.e., constant factor approximation) on Nash social welfare
and MMS (as well as GMMS) were not known prior to our work. It would also be
interesting to investigate whether these guarantees can be improved or if instances can
be constructed where our guarantees are tight. We believe that our work is just the
beginning toward determining an allocation that gives good guarantees with respect
to several notions of fairness: an allocation that is universally fair.

Very recently, Amanatidis, Ntokos, and Markakis [3] have announced an allocation
that has good approximation guarantees simultaneously with respect to four notions
of fairness when valuation functions are additive: in particular, their allocation is
(\phi  - 1)-EFX and 2/(\phi + 2)-GMMS, where \phi \approx 1.618 is the golden ratio. Moreover,
a fine-tuned version of their algorithm also achieves 4/7-GMMS, which matches our
result (see Theorem 3.5). They also show that for additive valuations, when m is at
most n+ 2, where m is the number of goods and n is the number of agents, GMMS
(and hence, EFX) allocations always exist. Even more recently, Berger et al. [10]
showed that when agents have additive valuations, an EFX allocation (X,P ) where
| P | \leq n  - 2 always exists; moreover, when n = 4, | P | \leq 1, i.e., at most one good is
unallocated.

Acknowledgments. We are grateful to the reviewers for their very helpful com-
ments and suggestions. We also thank the reviewers of the conference version of our
paper in SODA 2020 for their helpful comments.
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